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Abstract

Most model updating methods use measured frequency response function (FRF) data to update analytical models

whereas only response functions under base excitation can be obtained in practical vibration test due to difficulties and

constraints which prevent conventional FRFs from being measured accurately. This paper presents a new model updating

method, which can employ measured response function data under base excitation directly for updating. Mathematical

formulations using measured response function data under base excitation to identify mass and stiffness modeling errors,

have been established. Through simulated numerical case studies based on a cantilever beam as well as a practical

GARTEUR structure, it has been proved that the proposed method is feasible and effective when applied to the

identification of mass and stiffness modeling errors. It is also shown that this method has considerable noise-resisting

ability in the case where the measured response function data are contaminated by certain level measurement noise.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering practice, accurate mathematical models representing the dynamic characteristics of various
engineering structures have been required for structural design and analysis. However, current finite element
(FE) analysis cannot provide sufficiently accurate FE models, which are in good agreement with measured
results. As a way to improve FE models, model updating procedure has been introduced and widely used to
correct analytical FE models by using experimental test data.

In the past 30 years, a large number of model updating methods have been developed as discussed in the
literature surveys carried out by Mottershead and Friswell [1,2]. In 1980s, direct modal based methods had
been developed, such as the Lagrange multiplier methods introduced by Baruch [3] and Berman [4], matrix
mixing methods developed by Caesar [5] and Link et al. [6] and the error matrix methods [7]. Though these
early methods were computationally efficient, modal analysis was needed in these methods in order to obtain
modal data before model updating can be carried out. Eigensensitivity-based iterative methods [8,9] had
become dominant since 1990s due to the fact that these methods can preserve physical connectivity of an
original FE model. These methods used the measured modal data as targets for updating FE models. As a
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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result, modal analysis errors and incompleteness of measured modal data are inevitable during the updating
process, which can bear significant effect on the accuracies of updated models.

The FRF-based methods [10–12] are the most promising model updating methods, which can produce
accurate updated analytical models. These methods used measured FRF data directly to optimize a penalty
function, which is defined in terms of the different types of error functions. Lin and Ewins [12] presented an
iterative frequency response function (FRF) method in which the physical difference between the measured
and analytical receptances was written as a linear function of the parameters to be updated. This method is
able to produce highly accurate updated system matrices through iteration since the FRF sensitivity matrix
involved is formulated exactly when measured coordinate data are complete and accurately when measured
coordinate data are incomplete. It has been believed that the FRF-based method is more suitable for updating
FE models since lots of measured FRF data are available and damping matrix of a system can be identified if
the proper algorithm is applied. However, it needs to be further investigated and developed due to its
convergence problem.

Modal testing is widely and successfully used for the determination of vibration properties of structural systems
in engineering practice. In many situations, in order to simulate operational loads, base motion excitation is
involved in simulated operational tests. Due to the size limitation of test structural systems such as micro-systems,
base excitation technique is also applied in modal testing. Although base excitation test by itself is a technique of
vibration measurement, the measured response functions, which are defined by displacement output and
acceleration input, do represent the actual dynamic properties of structural systems just as traditional FRFs do. To
date, most of the modal testing techniques developed do not specifically address the identification of modal
parameters using this type of test data acquired using base excitation. Beliveau et al. [13] considered the relative
motion of a structural system with respect to its base and presented a procedure to obtain modal information
directly from the measured frequency response of the acceleration for the case of base excitation. In Ref. [14],
Thomas and David developed a method which can be used to convert the motion-to-motion FRFs under base
excitation test into motion-to-force FRFs using the equation of relative motion. Then, the modified FRF data
could be analyzed directly using algorithms of modal parameter estimation.

It is believed that in the current state of practice, only a few of the model updating methods are capable of
incorporating base excitation test data directly. This may be because most of updating methods developed
assume the availability of measured FRF data or modal data, which can be acquired relatively easily using
most existing modal testing techniques. Mark [15] presented a model updating procedure, in which a large
mass was introduced to convert the driving motions (base excitations) into equivalent external excitation
forces so that test data under base excitation can be used in FRF based updating methods indirectly. However,
some approximation about the applied forces has been made during the modeling procedure. Moreover, the
value of the large mass can not be determined accurately, which is usually chosen based on experiences and
can affect the accuracy of the updated results. In fact, base excitation test data can be adopted to update FE
models directly since the measured response function data naturally represent the vibration properties of
structural systems. And model updating using base excitation test data is likely to be more appropriate than
using modal data. This is because modal analysis may introduce additional analysis errors and the obtained
modal data are usually incomplete due to the limitation of test techniques.

In the response-based model updating method the response function measured under base excitation can be
considered as correlation targets directly. In this case, the method of updating would seem particularly similar
to the FRF-based updating methods since the properties of the response functions measured in case of base
excitation test are similar to FRFs obtained from force input. Moreover, an updating method based on test
data under base excitations is sometimes more appropriate for updating FE models of both macro/large and
micro/small structural systems. This is because a base excitation technique using shakers is usually more
preferred in the vibration testing of structures with very small feature size where conventional testing
techniques such as attaching an exciting shaker or using an impulse hammer becomes difficult to apply.

In the present paper, a new model updating method is presented which seeks to update analytical FE models
of a group of structures on which only vibration tests under base excitations can be made to measure response
functions. Compared with other existing FRF-based updating methods, the proposed new method has the
advantage that it can be applied to updating erroneous FE models accurately using measured response
function data under base excitation directly. In order to demonstrate the practical applicability of the
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proposed method, extensive numerical simulations have been carried out based on a cantilever beam and a
truss structure.

2. Base excitation

Typically modal testing involves exciting a structural system with either an impact hammer or a shaker. The
location and magnitude of the loads are selected such that enough energy can be imparted to the system to
excite the modes of interest. In many applications, the information needed from a test is not only for the
identification of the modes, but also for the verification of the response to operational loads. For this reason,
simulated operational tests are performed, many of which involve the applications of base motion excitations.
In this type of test, a test structure is fixed onto a shake table or displacement driven actuators subject to
controlled motions. Usually, to evaluate the response to road input, automotive systems are tested based on
known road/base excitation inputs. Many aerospace components are also tested in this manner to evaluate
their dynamic responses to launch, or flight vibrations. Due to the limitation of input techniques when applied
to test structures with small feature size, vibration tests of micro-systems such as hard disk drive are also
performed using base excitation test to investigate the dynamic characteristics of these systems.

In engineering practice, base-excitation model is widely used for studying buildings subjected to
earthquakes, packaging during transportations, vehicle responses, and even the design of accelerometers.
To demonstrate the basic concept of base excitation, a simple mass–spring system with three degrees-of-
freedom (dof) shown in Fig. 1(a) is considered. Here, all dofs of the system are relative to ground. Hence, the
measured responses of the system would also be relative to ground (in the later formulas and examples, if not
specifically mentioned, all the responses would be relative to ground). The system is only subjected to a
displacement input from the moving base. The governing equations of motion of this mass–spring system with
base excitation are written as

m3 €y3 þ k3ðy3 � y2Þ ¼ 0;

m2 €y2 þ k2ðy2 � y1Þ þ k3ðy2 � y3Þ ¼ 0

m1 €y1 þ k1ðy1 � y0Þ þ k2ðy1 � y2Þ ¼ 0;

8><
>: , (1)

where y0 is the displacement input of the base. Assume that the displacement responses are expressed as
yj ¼ Yje

iot (j ¼ 1,2,3) due to a base excitation input y0 ¼ Y0e
iot. Then (1) can be re-written in matrix form in

frequency domain as

k3 �k3 0

�k3 k3 þ k2 �k2

0 �k2 k2 þ k1

2
64

3
75� o2

m3 0 0

0 m2 0

0 0 m1

2
64

3
75

0
B@

1
CA

y3

y2

y1

8><
>:

9>=
>; ¼

0

0

k1y0

8><
>:

9>=
>;. (2)
k1

k3

k2

y0

y1

y3

y2

m1

m2

m3

m1

m2

m3

k1

k3

k2 y1

y3

y2

(a) (b)

Fig. 1. A three dofs mass–spring system with a (a) moving base (b) fixed base.
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Fig. 2. Response functions of a system with moving and fixed bases.
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Now, define new response functions with base excitation input as Hj�yj/y0 (j ¼ 1, 2, 3), after some
manipulation, Eq. (2) becomes
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Upon solving Eq. (3), the response functions of the system with base excitation input can be obtained as
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Based on Eq. (4), a typical response function, which is the transfer function between response output y3 and
the base excitation input y0, has been calculated and is shown in Fig. 2(a). Compared with conventional FRF
of the same mass–spring system fixed to the ground with the input excitation force being applied at coordinate
y1, the curve of the new response function under base excitation has similar shape to that of the conventional
FRF, although the actual values of amplitudes of the two curves are different. The frequency locations of the
resonance peaks of the two different types of response functions are the same. This means that the natural
frequencies of the system measured using base excitation test are the same as those measured using input
excitation force. If appropriate modal test techniques are used, modal data can also be obtained from the
measured response functions under base excitation.
3. Model updating using vibration test data under base excitation

3.1. Theory

To demonstrate how a model updating method using vibration test data under base excitation can be
developed, the mass–spring system shown in Fig. 1(a) with analytical modeling errors is first considered. The
equations (3) of motion of the experimental model and the analytical model of the system can be written,
respectively, as

ð½KX � � o2½MX �ÞfHX g ¼ fFX g, (5)
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ð½KA� � o2½MA�ÞfHAg ¼ fFAg, (6)

where {HX} and {HA} are the experimental and analytical response functions under base excitation and,
fFAg ¼ f0 0 k1g

T and fF X g ¼ f0 0 ðk1 þ Dk1Þg
T, respectively. Assume that [KX] ¼ [KA]+[DK],

[MX] ¼ [MA]+[DM] and {FX} ¼ {FA}+{DF}, upon subtracting (6) from Eq. (5) and rearranging, one has,

ð½DK � � o2½DM�ÞfHX g ¼ �ð½KA� � o2½MA�ÞfDHg þ fDFg. (7)

A model updating formula can then be developed based on Eq. (7) to identify stiffness and mass modeling
errors [DK] and [DM], assuming [KA] and [MA] are given and {HX} has been measured. The formulation of
such an updating procedure is presented as follows. Upon substituting the actual parameters of the
mass–spring system into Eq. (7), one has,
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where fHX g � fH3X H2X H1X g and fHAg � fH3A H2A H1A g. After some further mathematical
manipulations, Eq. (8) can be turned into the following:
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Eq. (9) is formulated using response functions under base excitation measured at one single frequency o. If
sufficient number of frequency data points are used, Eq. (9) will become a set of over-determined equations.
And general inverse of the coefficient matrix can be used to solve the equation sets for the unknown mass and
stiffness modeling errors. Subsequently, an updated analytical model can be reconstructed after the modeling
errors have been identified.

Having established the formulation of the updating method using measured response functions under base
excitation for the simple mass–spring system, application of the method to more general case of continuous
systems needs to be developed. For a continuous structural system with moving base, the equations of motion
of the system in frequency domain can be written as

ð½K � � o2½M�Þfug ¼ ff g. (10)

Here, it is assumed that the structural system under consideration is undamped. For simplicity, assume
further that the first node in the FE formulation of the structural system is fixed at the base whose motion is
specified, then this node will have the same motion as that of the base. Cases other node(s) being fixed to the
base can be similarly treated by rearranging the mass and stiffness matrices. Under the base excitation in this
case, the only possible external unknown forces applied to the system are applied at the fixed node. Suppose
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that the displacement vector of the fixed node is fû0g, Eq. (10) can then be written as

ð½K � � o2½M�Þ
fû0g

fûg

( )
¼
ff̂ g

f0g

( )
, (11)

where fûg is the displacement vector corresponding to those unfixed nodes and ff̂ g is the unknown external
force vector applied at the fixed node. Assume that the stiffness and the mass matrices of the structural system
can be partitioned into sub-matrices according to the dofs of the fixed nodes and the dofs of the unfixed nodes
as

½K � ¼
½K11� ½K12�

½K21� ½K22�

" #
and ½M� ¼

½M11� ½M12�

½M21� ½M22�

" #
, (12)

where subscript 1 corresponds to the dofs of the fixed node and subscript 2 corresponds the dofs of the unfixed
nodes, respectively. Separating fû0g and {u} in the displacement vector, we can rewrite Eq. (11) as

ð½K � � o2½M�Þ
f0g

fûg

( )
¼
ff̂ g

f0g

( )
� ð½K � � o2½M�Þ

fû0g

f0g

( )
. (13)

Substituting the sub-matrices of [M] and [K] into Eq. (13), one can obtain the following two equations:

ð½K12� � o2½M12�Þfûg ¼ ff g � ð½K11� � o2½M11�Þfû0g, (14)

ð½K22� � o2½M22�Þfûg ¼ �ð½K21� � o2½M21�Þfû0g. (15)

Suppose that the fixed node has motion only in one direction as it is usually the case in base excitation where
base motion is specified in one specific direction, the displacement vector of this node fû0g can be written as
fû0g ¼ f u0 0 0 0 0 0 gT (considering one node has six dofs). Then, upon dividing both sides by u0, (14)
and (15) become

ð½K12� � o2½M12�Þðfûg=u0Þ ¼ ðff̂ g=u0Þ � ð½K11� � o2½M11�Þfeg, (16)

ð½K22� � o2½M22�Þðfûg=u0Þ ¼ �ð½K21� � o2½M21�Þfeg, (17)

where feg � f 1 0 0 0 0 0 gT. From Eq. (17), we can obtain the response functions of the system under
base excitation input as

fHðoÞg � ðfûg=u0Þ ¼ �ð½K22� � o2½M22�Þ
�1
ð½K21� � o2½M21�Þfeg. (18)

Here, it should be noted that the response function is obtained in the case of arbitrary excitation input. No
matter what kind of base excitation (sinusoidal excitation or random excitation) is applied, the response
function is same since it is the natural property of the mechanical system. Now we have established the
relationship between the response functions under base excitation and system matrices. Based on Eq. (18), a
model updating method can be developed assuming that the response functions data under base excitation
{H(o)} have been measured. From Eq. (18), one can have the following for the analytical and experimental
models, respectively,

ð½K22�A � o2½M22�AÞfHgA ¼ �ð½K21�A � o2½M21�AÞfeg, (19)

ð½K22�X � o2½M22�X ÞfHgX ¼ �ð½K21�X � o2½M21�X Þfeg. (20)

Let the sub-matrices of the system matrices and the error matrices be related as

½K22�X ¼ ½K22�A þ ½DK22�; ½M22�X ¼ ½M22�A þ ½DM22�;

½K21�X ¼ ½K21�A þ ½DK21�; ½M21�X ¼ ½M21�A þ ½DM21�

(
(21)

and the analytical and experimental response functions under base excitation of the system as

fHgX ¼ fHgA þ fDHg. (22)
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Upon substitution of (21) and (22) into (20), one has,

½½K22�A þ ½DK22� � o2ð½M22�A þ ½DM22�Þ�½fHÞA þ fDHg�

¼ �½½K21�A þ ½DK21� � o2ð½M21�A þ ½DM21�Þ�feg. ð23Þ

Subtracting (19) from Eq. (23) and rearranging, following equation can be established:

½½K22�A � o2½M22�A�fDHg þ ½½DK22� � o2½DM22��fHgX

¼ �½½DK21� � o2½DM21��feg. ð24Þ

After some rearranging, (24) becomes

½½DK22� � o2½DM22��fHgX þ ½½DK21� � o2½DM21��feg

¼ �½½K22�A � o2½M22�A�fDHg. ð25Þ

Eq. (25) can be employed to solve for the unknown modeling errors. However, before this can be achieved,
some parameterization is needed. To parameterize the modeling errors, it is assumed here in this paper without
much loss of generality that the error mass and stiffness matrices can be expressed as linear combinations of
element mass and stiffness matrices, respectively,

½DM� ¼
XN

i¼1

ai½M
e�i and ½DK � ¼

XN

i¼1

bi½K
e�i, (26)

where [Me]i and [Ke]i are the ith element mass and stiffness matrices, respectively, and ai and bi are the design
parameter changes associated with the ith element. And the

P
sign denotes matrix building and not straight

summation. From Eq. (26), one can also derive the following:

½DM22� ¼
PN
i¼1

ai½M
e
22�i;

½DM21� ¼
PN
i¼1

ai½M
e
21�i;

½DK22� ¼
PN
i¼1

bi½K
e
22�i;

½DK21� ¼
PN
i¼1

bi½K
e
21�i;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(27)

where ½Me
22�i and ½M

e
21�i are the sub-matrices of the ith element mass matrix and ½Ke

22�i and ½K
e
21�i are the sub-

matrices of the ith element stiffness matrix, which are accordingly expanded and partitioned. Upon
substituting Eq. (27) into Eq. (25), one can obtain

XN

i¼1

bi½K
e
22�i � o2

XN

i¼1

ai½M
e
22�i

" #
fHgX þ

XN

i¼1

bi½K
e
21�i � o2

XN

i¼1

ai½M
e
21�i

" #
feg

¼ � ½K22�A � o2½M22�A
� �

fDHg. ð28Þ

Eq. (28) can be transformed into a set of linear algebraic equations in terms of unknown design parameter
changes ai (i ¼ 1, 2,y,N) and bi (i ¼ 1, 2,y,N) as

sa
1 sa

2 � � � sa
N sb

1 sb
2 � � � sb

N

h i fag
fbg

( )
¼ � ½K22�A � o2½M22�A

� �
fDHg, (29)
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where sa
i , sb

i , {a} and {b} are

sa
i ¼ �o

2½Me
22�ifHgX � o2½Me

21�ife; g;

sb
i ¼ ½K

e
22�ifHgX þ ½K

e
21�ifeg;

fag ¼ ð a1 a2 � � � aN Þ
T;

fbg ¼ ð b1 b2 � � � bN Þ
T:

8>>>><
>>>>:

(30)

Eq. (29) is established based on measured response function data under base excitation at one measurement
frequency. In practical vibration test under base excitation, response function data are measured at many
different measurement frequencies. When response function data at sufficient number (n) of measurement
frequencies are used, Eq. (29) can be turned into a set of over-determined algebraic equations, which can be
simply written as

½S�fpg ¼ fqg, (31)

where

½S� ¼

sa
1ðo1Þ sa

2ðo1Þ � � � sa
Nðo1Þ sb

1ðo1Þ sb
2ðo1Þ � � � sb

Nðo1Þ

sa
1ðo2Þ sa

2ðo2Þ � � � sa
Nðo2Þ sb

1ðo2Þ sb
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Nðo2Þ

..

. ..
.

� � � ..
. ..

. ..
.

� � � ..
.

sa
1ðonÞ sa

2ðonÞ � � � sa
NðonÞ sb

1ðonÞ sb
2ðonÞ � � � sb

NðonÞ

2
666664

3
777775,

fpg ¼
fag

fbg

( )
and fqg ¼

�½½K22�A � o2
1½M22�A�fDHðo1Þg

�½½K22�A � o2
2½M22�A�fDHðo2Þg

..

.

�½½K22�A � o2
n½M22�A�fDHðonÞg

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
.

Here, [S] is a known coefficient matrix which is formed using the given analytical model and the measured
response function data under base excitation. Eq. (31) can be solved for {p} using linear least squares methods
and then the solution {p} is used to reconstruct the updated analytical model together with the original
analytical model itself. Following above updating procedures, an accurate updated model can be obtained.

It has to be pointed out that during the development of the new model updating method under base
excitation, it has been assumed that only one node is assumed to be fixed to the base where excitation is
generated. In practice, however, there might be several nodes specified in an analytical model which are fixed
to the base. In the case where multiple nodes are fixed, only the sub-matrices of the system matrices associated
with the dofs of the fixed nodes and unfixed nodes will need to be changed through proper partition. And the
vector {e} which is associated with the dofs of the fixed nodes will also be changed accordingly.
3.2. Practical considerations

During the derivation of the formulas of the updating method, displacement response functions are applied
while, in practical vibration testing, the measured responses of the system would typically be accelerations and
not displacements. Since the displacement response function is defined as HðoÞ ¼ uiðoÞ=u0ðoÞ, (i ¼ 1, 2,y,n),
where u0(o) and ui(o) are the Fourier transforms of excitation and response time signals, respectively, then the
acceleration response function would be IðoÞ ¼ €uiðoÞ=u0ðoÞ, (i ¼ 1, 2,y,n). Similar to the relationship
between receptance and accelerance, there would be a certain relationship between these two kinds of response
functions. In the general case, where an arbitrary excitation is applied and the response is measured, the
relationship can be expressed as H(o) ¼ �I(o)/o2, which may be derived from the non-sinusoidal vibration
and FRF properties theory in Ref. [16]. Therefore, if the acceleration response function is measured, the
displacement response function would also be available based on the relationship. During the practical
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updating procedure, H(o) ¼ �I(o)/o2 should be employed to replace displacement response function in the
formulas when measured acceleration responses data are available.

Eq. (31) is obtained using the analytical and measured response function data under base excitation in the
case where damping matrix of the experimental model is not considered. In engineering practice,
experimentally derived responses function data contain damping information and are always complex in
nature. Since the measured response function data of practical structures are complex while this updating
method requires real response function data, some kind of numerical pre-treatment of measured complex
response function data becomes necessary before the suggested updating method can be performed. Here, are
two complex-to-real conversion methods are proposed and developed. One is choosing the real parts of the
measured complex response function data as the ‘experimental’ response function data and these real data are
used for updating for frequency points off resonances. The alternative is to take the modulus of the complex
response function data as the modulus of the real response function data. The signs of the converted real
response function data are the signs of cosines of the phase angles associated with these response function data
points. In general, these two conversion methods are approximate methods in which the imaginary part of
measured response function data are is ignored. Since it is believed that most practical structures are lightly
damped, these methods do provide real experimental response function data for model updating without
introducing larger errors in the procedure.

In practice, it is not realistic to assume that all the coordinates, which are specified in the analytical model
have been measured since some coordinates are physically inaccessible such as internal dofs and some others
are very difficult to measure such as rotational dofs. When the measured coordinates are incomplete, direct
solution of the updating problem is generally not possible and some approximation has to be introduced.
During the calculation of the coefficient matrix [S(o)] and the difference vector {q(o)}, those unmeasured
elements of the response function vector are replaced by their analytical counterparts. Then, it will lead to the
same linear algebraic equations as (31), which constitute a first-order approximation due to the incompleteness
of measured coordinates. Again, when data at several frequency points are used for the equations, linear least
squares methods can be use to solve for {p}. Of course, the obtained {p} in this way is only a first-order
approximation and an iteration scheme is required in the process in order to accurately obtain the exact
solution. During the iteration process, the objective function to be minimized should be chosen in order to
determine whether the convergent p-values is obtained. Here, the Euclindean norm of p-values, J{p}J is define
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Fig. 3. A cantilever beam attached to a base: (a) the analytical FE model, (b) refined FE mesh used for ‘experimental’ model.
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as the objective function for convergence criterion. Generally, it is believed that convergence of the p-values is
achieved when the value of J{p}J is less than 10�5.

It should also be noted that convergence of updated parameters in iteration process is an important measure
of the success of the updating procedure. Mathematically, the updating formulation in Eq. (31) is based on a
particular form of matrix perturbation analysis in the case where the measured coordinates are incomplete.
According to matrix perturbation theory, in order to guarantee convergence of the iteration process, some
restriction should be made on the extent the difference between the analytical and experimental models. The
restriction mentioned in Ref. [12] may be considered here. The Euclindean norms of the errors matrices should
be of second-order when compared with those of the analytical mass and stiffness matrices themselves,
namely,

jj½DM�jjF
jj½MA�jjF

p�;
jj½DK �jjF
jj½KA�jjF

p� where jjDjjF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

i¼1

d2
ij

s
. (32)

Although the value of e varies for different systems, computational experience shows that for structural
dynamic systems, the maximum value of e may reach 0.3. Since the Frobenius norm is used and modeling
errors are generally localized, the relative amplitudes of changes for individual design parameters can easily be
more than 100% and still satisfy this requirement, as shown in the numerical case studies below.
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4. Numerical case studies

4.1. Case 1—cantilever beam

In order to demonstrate its practical application, the proposed model updating method using vibration test
data under base excitation has been applied to a cantilever beam shown in Fig. 3. The left end of this cantilever
beam is fixed to the base, which has the same displacement as that of base motion in vertical direction.
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Following parameters are used for this beam: Young’s modulus of elasticity E ¼ 2.06E 11N/m2, cross
sectional area A ¼ b� h ¼ 0.02� 0.006m2; length of the beam L ¼ 1.0m; material density r ¼ 7895.0 kg/m3.
The analytical FE model of the beam, which is to be updated, is formulated using 10 bending beam elements
as shown in Fig. 3(a). In order to simulate the practical structure more realistically, the ‘experimental’ model
in this case is generated using a much refined FE mesh as shown in Fig. 3(b). And this model consists of 50
beam elements, which is five times that of the coarse analytical FE model and may be considered to be close to
the practical structure. To generate the ‘experimental’ response function data, it is assumed that the cross-
section areas of the 11–15th, the 16–20th, the 21–25th and the 31–35th elements are increased by 120% and the
second moments of area of the 16–20th, the 31–35th, the 36–40th, and the 41–45th elements are reduced by
60%, respectively.

In this case study, only the translational dofs of the bending beam are assumed to have been measured since
the measured dofs are usually incomplete in vibration test. We suppose that the response function data of the
‘experimental’ model have been measured over a frequency range covering just the first 6 resonances, with base
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Fig. 7. Comparison of the exact and identified modeling errors (case 2).

Table 1

Mass and stiffness modeling errors location (case 2)

Element no. 34 66 72 73

A Error (%) 100 100 100 100

Element no. 1 2 28 29 43 44 45 46 47 48 49 50

I Error (%) �90 �90 100 100 100 100 100 �90 �90 �90 �90 �90
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excitation applied at the fixed node in u direction. Based on Eq. (31), the response function data at 10
measurement frequency points are chosen in the measured frequency range to construct the coefficient
matrices [S(o)] and {q(o)}. Since approximation is made during the derivation of the updating formulation of
this proposed method due to the incomplete measured dofs in this case and the refined ‘experimental’ model is
used, iteration process is required during updating. The iteration results for identification of element modeling
errors are shown in Fig. 4. It can be seen that all the introduced modeling errors are well identified after 9
iterations. The response function curves of the ‘experimental’, analytical and updated models are shown in
Fig. 5. From this figure, one can expect that the regenerated response function data from the updated model
overlay those of the ‘experimental’ response function data. There are a few differences between the regenerated
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Table 2

Mass and stiffness modeling errors location (case 3)

Element no. 34 66 67

A Error (%) 200 200 200

Element no. 7 8 26 27 40 41 47 48 54

I Error (%) �90 �90 200 200 200 200 20 �90 �90

Table 3

The selected elements to be updated and their corresponding parameter number (case 3)

Parameter

no.

1 2 3 4 5 6 7 8 9 10 11 12 13

Element no. 1 2 7 8 14 15 21 22 26 27 33 34 40

Parameter

no.

14 15 16 17 18 19 20 21 22 23 24 25

Element no. 41 47 48 54 55 59 60 66 67 71 72 78
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and ‘experimental’ response function data only at the resonant and anti-resonant regions, which is also the
phenomenon in the response function data of two incompatible FE models.

4.2. Case 2—truss structure with complete coordinates

In this case, a simulation example based on a GARTEUR structure [12] shown in Fig. 6 is presented. The
GARTEUR structure has two points fixed to the base. The FE model of the GARTEUR structure consists of
78 2-D beam elements. Each beam segment is a superposition of an axial bar element and a bending beam
element. Each node of the beam element has three dofs (two translations and one rotation) and hence, the
total number of dofs in the FE model is 222. Following material properties are used during FE modeling:
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Young’s modulus is assumed to be E ¼ 0.75� 1011N/m2 and density r ¼ 2800 kg/m3. For the bar element, the
cross-sectional areas are Sh ¼ 0.004m2 (horizontal), Sv ¼ 0.006m2 (vertical), and Sd ¼ 0.003m2 (diagonal).
For the bending beam elements, the second moment of area is assumed to be the same for all the elements and
is assumed to be I ¼ 0.0756m4. In order to generate the ‘experimental’ data, mass and stiffness modeling
errors are introduced in the elements of the analytical model of the structure by changing the cross-section
area A and the second moment of area I of some of elements as shown in Table 1.

We suppose that the response functions of all dofs have been measured over a frequency range covering just
the first 8 resonances, with base excitation applied at the fixed nodes in the v direction. Based on Eq. (31),
response function data at 20 frequency points are chosen in the measured frequency range to construct the
coefficient matrices [S(o)] and {q(o)}. The results for the identification of element modeling errors are shown
in Fig. 7. The response function curves of the ‘experimental’, analytical and updated models are shown in
Fig. 8. From this figure, it is found that the regenerated response function data from the updated model
overlay perfectly with those of the ‘experimental’ model.
4.3. Case 3—truss structure with incomplete coordinates

In vibration test, it is not realistic that all the coordinates, which are specified in the analytical model have
been measured. Therefore, the effect of coordinate incompleteness upon the updating procedure should be
assessed. Due to the incomplete measured dofs, those unmeasured elements of the response function vector are
replaced by their analytical counterparts when the coefficient matrix [S(o)] and the difference vector {q(o)}
are calculated. Since some approximation has been made during the formulation of the coefficient matrix and
the difference vector, iterations are required in the updating process in order to accurately identify the
modeling errors.

In this numerical example, the same GARTEUR structure fixed to the base shown in Fig. 6 was considered.
And the response function data of the ‘experimental’ model are supposed to be incomplete in the sense that
only the translational dofs (u and v) of those hatched nodes are measured. In order to simulate the
‘experimental’ data, mass and stiffness modeling errors are introduced in the analytical model of the structure
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by changing the cross-section area A and the second moment of area I of some elements as shown in Table 2.
Since in practical modeling of structures, modeling errors generally occur in the modeling of joint elements,
localization of modeling errors can be considered first before the application of the updating method in order
to reduce computational time and improve the condition. Therefore, in this case we only choose those
elements, which are located at joint positions to be updated as shown in Table 3. The mass and stiffness
modeling errors of the selected 25 elements are shown in Fig. 9(a). The response function data have been
measured over a frequency range covering just the first 8 resonances, with base excitation at the fixed nodes in
the v direction. Based on Eq. (31), response function data at 20 frequency points are randomly chosen for each
iteration in the measured frequency range to construct the coefficient matrices [S(o)] and {q(o)}. After 20
iterations, convergence of the solution is obtained. The iteration results for the identification of element
modeling errors are shown in Fig. 9. The response function curves of the ‘experimental’, analytical and
updated models are shown in Fig. 10. From this figure, it is found that the agreement between the updated and
‘experimental’ response function data is excellent.

4.4. Case 4—noise problem (cantilever beam)

In engineering practice, the measured response function data from typical vibration test are usually
contaminated by measurement noise. Therefore, in order to investigate the effect of measurement noise on the
updating process, based on the same cantilever beam model, 6% uniform distributed random noise was added
to the simulated measured response function data. To generate the ‘experimental’ response function data, the
analytical FE model shown in Fig. 3(a) having both mass and stiffness modeling errors is assumed as the
‘experimental’ model. The modeling errors are introduced due to a 100% increase of cross-section area, A, in
the 3rd, 4th, 5th 7th elements and a 60% reduction of second moment of area, I, in the 4th, 7th, 8th, 9th
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Fig. 11. Iteration results of identification modeling errors (case 4).
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elements, respectively. The introduced modeling errors in the ‘experimental’ model for this case are shown in
Fig. 11(a). Considering that not all dofs can be measured in practical test, we assume that only the
translational dofs are measured with base excitation applied at the fixed node in the u direction. The response
function data have been selected in a frequency range covering just the first 7 resonances. Since the
contaminated and incomplete response function data are used, iterations in the updating procedure are needed
in order to average the effect of measurement noise. In each iteration, 30 different frequency points are
randomly selected from total 250 frequency points to calculate the coefficient matrix. The iteration results of
identified element modeling errors are shown in Fig. 11. From this figure, it can be seen that convergence of
the solution is obtained after 20 iterations. The response function curves of the ‘experimental’, analytical and
updated models are shown in Fig. 12. From this figure, it is observed that a good agreement between the
regenerated response function data from the updated model and those of the ‘experimental’ model is reached
even in the presence of measurement noise.

5. Concluding remarks

In many practical cases of vibration test, only response functions under base excitation can be obtained due
to difficulties and constraints which prevent conventional FRFs from being measured accurately, such as in
the cases of civil structural systems and micro-electro-mechanical systems whereas analytical models need to
be updated/validated using measured vibration test data. In this paper, a new model updating method has
been developed, which employs response function data measured under base excitation directly. Instead of
using conventional FRF data or the derived modal data which are not readily available in the case of base
excitation test, mathematical formulations of a model updating method using measured response function
data under base excitation directly to identify mass and stiffness modeling errors, have been successfully
established. Simulated numerical case studies based on a cantilever beam as well as a more realistic practical
GARTEUR structure with complete and incomplete coordinates have been carried out to assess the
applicability of the proposed model updating method. The success of these cases has proved the feasibility and
practicality of the proposed method when applied to the identification of mass and stiffness modeling errors.
Very promising results have been obtained even for the case where the measured response function data are
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contaminated by 3% measurement noise. Although in these cases the structural models assumed are relatively
simple, the method has demonstrated its potential to be applied to model updating of more complex practical
structures using base excitation test data.
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